If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-5600=0
a = 1; b = 10; c = -5600;
Δ = b2-4ac
Δ = 102-4·1·(-5600)
Δ = 22500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22500}=150$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-150}{2*1}=\frac{-160}{2} =-80 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+150}{2*1}=\frac{140}{2} =70 $
| -6p-20=2(-10-6p) | | F(3)=x3-5x-4x+20 | | 10-5d=-7d-10 | | −3|x+7|=−12 | | -12(x+1)=-14x | | 3(2x)+4x=-(3-2x)+7+x | | 8.9x-7=117.6 | | 2.25/x=3/7.5 | | n-31=52 | | 18u+4u-14u-7u=16 | | 10-4r=-2+2r-3r | | -10x-18=-128 | | -42-9x=-14x+58 | | 3x-8=8x+4 | | -12x-4=-136 | | –2(x–4)+1=7 | | 6x+14=3(2x | | 3+2(2x+8)=1 | | 7/8=7/x+5 | | 3(d+2)-4d=18 | | 17+3x=45+2x | | −13x−14=−12 | | 28(x-1)=32x | | -(1+5m)=-(m+1) | | 2r+8/6=4r-24/4 | | -4(f+2)=12 | | n/90=7/9 | | 4(p+2)=24 | | -4(f+2=12 | | g-g+2g=16 | | 2x-5+(-11)=21 | | -11x+18=-147 |